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ON THE ACCURACY OF CONSERVATION OF THE ADIABATIC INVARIANT* 

A.I. NEISHTADT 

A Hamiltonian system with one degree of freedom is considered. The system depends 
on the parameter E which varies slowly with time t: f = F;(et),O<~e 1 and tends in 
a sufficiently regular manner to well defined limits as t- +w. When t-kX, the 
adjabatic invariant, acting along the trajectory of such system, has thelimit 
meanings I+. Their difference Al= I+ - I- is estimated, 

The problem of estimating AI appears in classical mechanics /1,2/, quantum mechanics/3/ 
and in the theory of waveguides /4/. In the case when the dependence of f on et is finite 
(E (ct) = const for sufficiently large et) and infinitely differentiable, the author of /5/shows 
that AI decreases, as E-O, faster than any power of E. For the linear systems with the 
frequency depending analytically on et, the known asymptotic of AI is found to be ex- 
ponential AI = O(exp(--C/E)), c = const /3,6/. An erroneous proof of the exponential smallness of 
Al in given in /l/ for the case of an analytic E(et) for the general nonlinear systems. 

Below the problem of estimating AI is considered with help of the perturbations proced- 
ure in the action-angle variables. For the case when the dependence of 5 on et is finite 
and has a finite smoothness, a power asymptotics is obtained for AI and the exponential 
smallness of AI in E is proved for the case of analytic 5 (Et). 

1. Equations in the action-angle variables. The Hamiltonian of the problem in 
question has the form 

E = E (p, q, E), 5 = E (a), h = Et (1.1) 

where p and (I denote the canonical variables. We assume that E is an analytic function of 

PY Q and E. 
Let a region filled with closed trajectories exist for every 5 on the phase plane of 

the unperturbed (E=const) problem. The action--angle variables of the unperturbed problem 
are defined in this region /l/. The action I = Z(p,q,E) is an area divided by Zn, bounded 
by an unperturbed trajectory passing through the point (p, q). The angle 'p =CP(P, q, 5) mod 2n 
is an angular coordinate along the trajectory, varying uniformly in the unperturbed system. 

The variable change p,q-+ 1, y is canonical and time-dependent. The change of the variabl- 
es I,cp in the initial problem is described by a Hamiltonian system with the Hamiltonian 

H (I, ‘p, 1) = H, (1, h) + &HI (1, cp, A) (1.2) 

where H, is the original Hamiltonian of E expressed in terms of Z and h 

H, = (dE!dh) G (I, cp, h) (1.3) 

o = o (I, h) = aHo/dI 

and H is an analytic function of Z and cp, and 2n -periodic in rp. 

We shall use the angle brackets <.>" for the 2n -periodic functions of cp to denote the 

averaging over (p, and the curly brackets {.>‘J' for the purely periodic part:{.}‘@ = (a)- <.)‘@. 

Further, in order to reduce the amount of notations used we shall assume that <H,>'p = 0 , 
otherwise we shall have to replace, in the arguments that follow, Ho by Ho i- e<H,)v, and H, 

by {HI)'. 

2. The procedure of the perturbation theory. The procedure described here of 

asymptotic integration of the system with the Hamiltonian (1.21, analogous to that given in 

/I/, will be used to obtain the estimates of variation in the value of the adiabatic invari- 
ant. 

Let us carry out, in the system with the Hamiltonian (1.2),a canonical, nearly identical 
variable transformation with a so far undefined generating function W = Jq + ES (J, cp, A). 

Here J and II, are the new canonical variables connected with I and 'p by the relations 
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The variatton in J and 9 is described by a Eaailtonian system wilth the Wamiltonfan 
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(2.1) 

In the right-hand part of (2.2) cp must be expressed in terms of J and $ in accordance with 
(2.1). Let us choose 

Since (HJV = 0, the above expression is correct aa S is a 2x-periodic function of Ip 

with a zero mean value. For S chosen in such a manner we have 

@ = Ho (J, k) + eW (2.3) 

e*F-_ es-$ +(H,,(J+e$. x)-_a,(J,5)--e~~e~~ir’~)-~ 

e Ii1 J+e-$- ( ( , cp, +-dJ, cp, U), F=Q(i) 

Let us denote Q@ = Ho + e2{F)*, d$ = {F}* 

?&en the Wemiltonian will become 

@ = at, (J, k) + e*@, (J, $. 11) 

which is caapletely analogous to (1.2) except that the team dopending on the phase +' is now 
of the order of e". Repeating the above procedure once more ,we obtain a Hamiltonian in 
which the phase dependence appears only in the texms of the order of Es. Finally, after 
n steps of the above procedure we obtain the Hamiltonian in the for5 

@ (J. @. U = % (J, k) + Pi1 U’t (J, up, 11) (2.4 

where the new variables end the Hamiltonian are still expressed in terms of J, $ aa Q, . 
Neglecting in the Hsuailtonian (2.4) the last term, we obtain the following relations for 

the variation of J and 9 with time: 

Analysis of the corrections brought in by each consecutive step of the procedure shows 
that the relations {2.5) describe the variation in J with the accuracy of 0 (en") and in $ 
with the accuracy of O(P) on the time intervals of the order li'e (provided that the step 
in question is feasible). From (2.3) we see that every step of the procedure reduces the 
smoothness of the Hamiltonian with respect to h, by 1. It follows therefore that the nuWb- 
er of steps which cab be carried out dependsonthesmoothnessHof the Hamiltonianwithrespect 
to h. 

(2.5) 

3. The aaymptotics of variation of the adiabatic tnvariant for a finite 
perturbation of finite smoothness. Let the perturbation be finite g(h) E coast for 
h<h_ and h>k+, where & axe constant. Let the first n - 1 derivatives of E (11) 
be continuous (aud hence vanish) at the point hi: , and the n-th derivative be discontfnu- 
ous, i.e. n> 1. Let the function c(k) be differentiable II. + 2 times for SE@_, A) 
its derivatives bounded. 

and 
We shall calculate the asymptotics of varlatlon of the adi'abatic 

invariant. 
Let u5 denote by I (k), cp (k.) th e solution of a system with the Hamiltonian (1.2) and 

1, = 1 (&J, q_ = cp (;a,), AI = 1, - I_.. We shall wrfte, for a 2x-periodic function f (9) 
with zero mean value 

Theorem 1. The quantity AI has the following asyaiptotics 
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AZ = En (R (h, - 0) - R (It. + 0)) + 0 (e”“), R(h)=- <,$;;(fi)bj (I,^-‘@ (I_, v*(X), A) (3.i) 

where L-1 denotes the operator L raised to the (n- I)-th power, G is given by (1.3), 
and 

, v dv ) 

Proof. When J"E (h-7 A+) 1 the smoothness allows ~1 -t 1 steps of the procedure given 
in Sect.2. Let us denote by (.I,*) the variables introduced in the n-th step, and by w= 
Jq f cS(J, cp, 1) the generating function of the substitution (1, cp) - (J, 9). Let 
denote the solution 

J (a), 9 (h) 
I(Ir),cp(h) in terms of the variables (J,$). From the formulas for the 

substitution of variables it follows that 

I@+)--I(A_)=J(h+-O)-J(h_ -0) ~,_eas(Jo.);gP’(h).Q 1;:;: (3.2) 

and the assertion of Sect.2 concerning the accuracy of (2.5) yields 

J (A+ - 0) - J (a_ + 0) = 0 (En+') 

Analysis of the procedure of Sect.2 shows that 

Let us now substitute the above expression into the right-hand part of (3.2) and replace 
in S J (k) by I_ and cp (h,) by cP*(h+) * The admissible error in this case is 0 (En+'). 
Taking into account the expression for HI (1.3), we obtain the required expression (3.1). 

Note. The formula (3.1) can be rewritten in the form 

h+ 
81: - 

s 
aH, (I-. Q*(h), A) dj,+O (,n+') 

aQ 
h_ 

since the asymptotics of the integral is given here by the right-hand part of (3.1). 

4. Exponential estimate of the variation of the adiabatic invariant for an 
analytic perturbation. Let now the function t(k) be analytic in some strip lImhl< p. 
Let also the integral 

1 

SI I $ dh 
-x 

(4.1) 

be uniformly bounded in this strip for the straight lines Im 1, = const and let dgldh-+ 0 as 

Reh+_+m. We shall assume, as before, that the initial Hamiltonian E (P, q, E) is an an- 
alytic function of its arguments, so that the passage to the action-angle variables yields the 
Hamiltonian H (1.2) analytic in the complex domain 

I Ima KP, !I--II,ltx, (ImQl<c 

where x > 0, c > 0, 1, are constants and I, is real. 
Let I(h),Q(h) be the solution of the Hamiltonian system in question, and I(0) = I,. The 

convergence of the integral (4.1) implies the existence of 

I, = lim~_,+VZ (h), AI = I+ - I- 

Theorem 2. The variation of the adiabatic invariant AI is exponentially small: AI = 

0 (sxp (-CJE)), Cl > 0 is a constant. 

Proof. This is based on the procedure of Sect.3 and uses the technique of estimates 
given in /7,8/. After a large number of steps (--l/e) of the procedure, the dependence ofthe 
Hamiltonian on phase concentrates in the exponentially small terms, and this implies the ex- 
ponential smallness of AI. 

Let us pass to the estimates. We denote by P,,,x~,u,.~,~,M, the positive constants such, 

that when 
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then the inequalities 

I Im n! c PO, I Z - I, I < x0, I Im cp I -C a0 

6< Imol~zl<e, IH, I-CM, (4.2) 

hold. 
Consider the procedure of Sect.2. Let us carry out N>O steps of this procedure. 

After the k-th step the Hamiltonian is reduced to the form 

in the region 

(4.3) 

We shall show that be choosing suitably A = A(e), MI = U,(E) we can obtain N -1 I e such, 
that the following estimates will hold at all steps of the procedure: 

'I*@ < I m”wz I < 28 (4.4) 

(4.5) 

The proof is by induction. The estimates (4.4) and (4.5) clearly hold for the initial 
Hamiltonian. Assume that they hold for k steps and, that pk+l = Pk - A > 0. Consider now 
the (k + I)-th step, denoting the new variables by J and II. The generating function of 
the variable change W has the fonu 

&9 
W=Jcp+eS(J,cp,h), G=-L- 

aup/aal 
(S)Q=O (4.6) 

Using the assumptions (4.4) and (4.5) we can show that when 

! 1 - IO I < xk - 26k+ll 1 h q 1 < ok - @k+l 

the change governed by the generating function Wis well defined and the domain of variation 
of the new variables J,$ contains the region 

IJ- 10 ! < %k - 36k+lv I Im $ 1 < ok-- 3pk+l 

The proof duplicates the known argument of (/7/, Sect.41 and is therefore omitted. 
Let us obtain the estimates for the new Hamiltonian. Using the Cauchy 

the definition of S (4.6) and the estimates (4.41, (4.5) we find that when 

IImkI<Pk-k ! Z - I, I c x1. - 26ir+l, 1 Im cp I < Qk 

then the Inequalities 

inequalities /7/, 

(4.7) 

hold. The new Hamiltonian is computed according to (2.3). Estimating the right-hand part of 
(2.3) in the region 

( hll h I< Pk - A, ( J - Z, I < %k - 38k+l. 1 Im Cp I< Ux 

we find, with the help of (4.4), (4.5) and (4.71, that 

I~I<e(~+~+~)=~(i+~+~)<~~ 

ana this yields 

(4.8) 
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Expression (4.9) and the Cauchy inequality together show that when J .I 

Let us write 

Then 

and from this it is clear that the relations (4.5) remain valid for the 
the procedure. Further, from (4.2) and (4.10)-(4.12) we obtain 

(4.9) 

1, 1 < K~-- 46~+~ then 

(4.10) 

(4.11) 

(4.12) 

(k + 1) -th step of 

Since S = '1,~ = const it follows that for a sufficiently small E 
also for the (k + 1) -th step. 

In this manner we can repeat the variable change as long as 
can carry out 

the conditions (4.4) hold 

6’k > O. This means thatwe 

steps. After the IV-th step we obtain 

1 @:“‘I < IV~(+)~ =O(exp(-ccl/e)) 

i.e. CD:"' is an exponentially small quantity. 
We shall show that the function (D'N' 1 is also exponentially small on the integral norm 

-2 

where the upper bound of the integrand is taken over all I and cpbelonging to the domain of 

definition of @"' (4.2), the integral is taken along the straight line 
the upper bound pkeceding the integral is taken over all such lines with 

Im h = const, and 

1 Im h 1-c Pk. 

Let us return to the (k + I)-th step of the procedure of Sect.2. We shall obtain the 

estimate for the integral norm of the function aSI& in the strip I Im h I -C ~r+~ = pr - A 
in terms of the integral norm of S in the strip 1 Imh I<Pk. In order to simplify the form- 

ula, we shall write, for the time being, s (h) = s (I, cp, A). By virtue of the Cauchy integral 

formula we have 

where the contour r is a circle of radius A with the center at the point 0. Therefore 

Changing the order of integration, we obtain 

Estimatina now It s/I is terms of 11 @!""I1 and using (4.41, (4.6) we find, that at the 
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(k + I)-th step of the procedure 

Finally, estimating II@\"n(I and using (2.3), (4.13), 
obtain 

(4.13) 

(4.4), (4.5), (4.7) and (4.11), we 

I$-\&. =O(exp(-+)) 

Q.E.D. 
Let us now study the variation of the adiabatic invariant over an infinite period. Let 

us denote by J, 9 the variables introduced at the N-th step of the procedure. The domain 
of variation of these variables contains the region 

I J - I, I < 1Izxo, I Im II, I < lI,oo 

Let J(h),%(h) denote the initial solution Z(h), cp(h) in terms of the variables J.$ .Since 
dElcl&+ 0 as h-+*0% the substitution I, 'p-t J,$ tends to become an indentity when 
h3f 00. This implies that 

J,=limJ(h) when h-tfoo, J*=ZI,. 

exist. Now, 

AZ==+-J_=- 
(c ml”’ (.I (h), (I, (AX A) dh. 

s @ -cc 

By virtue of the Cauchy inequality we have, for real \I, , 

and this yields 

Q.E.D. 

AZ = 0 (11 <b,(S) 11) = 0 (exp (-q/e)) 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 
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